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a b s t r a c t

In this paper we introduce and analyze new classes of cooperative games related to facility
location models. The players are the customers (demand points) in the location problem
and the characteristic value of a coalition is the cost of serving its members. Specifically,
the cost in our games is the service diameter of the coalition.

We study the existence of core allocations for these games, focusing on network spaces,
i.e., finite metric spaces induced by undirected graphs and positive edge lengths.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The goal of cooperative game theory is to study ways to promote and enforce cooperation among agents (also called
players) willing to cooperate [1,4,9,10,19]. A way to enforce cooperation is to find suitable allocations of the cost or benefit
of such a cooperation among the players. These allocationsmust satisfy some rationality principles so that players are happy
about their payoffs. Game theorists have analyzed the above problem over the years and have proposed several solutions,
core allocations being the most universally accepted for the fairness properties they satisfy.

Basically, the core of a cooperative situation is the set of allocations of the total cost that satisfy the individual and
collective rationality principles. In cost games, individual rationality means that no agent is going to be charged more than
what he would pay acting by himself. Collective rationality ensures that no group of agents (also called coalitions) would
be charged more than what they would pay when acting by themselves. The allocations satisfying those two principles can
be considered stable in the sense that no agent or coalition would have incentives to break the grand coalition (the coalition
consisting of all players), and thus cooperation is sustained. There is a large body of literature dealing with core concepts in
cooperative game theory, e.g., [22].

Recall that a generic finite cooperative game is a pair (N, v) where N is the set of players and v is the characteristic
function defined from 2N to R, which satisfies v(∅) = 0, and assigns to each coalition S ⊆ N a value (benefit or cost). For
convenience, suppose that N = {u1, . . . , uk}. With this notation, and assuming v is a cost function, the core of (N, v) is the
set

C(N, v) = {x ∈ Rk
: x(S) ≤ v(S), ∀ S ⊂ N and x(N) = v(N)},

where x(S) =


j:uj∈S xj, for all S ⊆ N .
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In the last decades there has been an increasing interest in studying cost allocation problems arising from and related
to a variety of operations research problems and general optimization models (see [2,14]). Pioneering studies along this
extensive line of research are the papers on assignment games, [27], linear production games, [21], network flowgames, [13],
and minimum spanning tree games, [4,1,9,10,19]. Even nowadays, this subject attracts a lot of interest among researchers,
see e.g., the book by Nisan et al. [20] and the recent paper by Caprara and Letchford [3].

Our main interest is in cost allocation games related to location models. Some relevant references are [7,8,19,23,24,30].
The underlying optimization model of the games in this paper considers a connected undirected graph G = (V , E) with

positive edge lengths {le}, e ∈ E, where V = {v0, v1, . . . , vn}, and a set N ⊆ V \ {v0}. Each edge in E is assumed to be
rectifiable. We refer to interior points on an edge by their distances (along the edge) from the two nodes of the edge. A(G) is
the continuum set of points on the edges of G. For any pair of points x, y ∈ A(G), we let d(x, y) denote the length of a shortest
path connecting x and y. We refer to A(G) as the metric space induced by G and the edge lengths.

Also given is a finite subset of nodes N ⊆ V \ {v0}. At times we refer to these nodes as existing facilities, or demand points.
The distinguished node, v0, is viewed as an essential element in the system, e.g., each demand point must have access to
v0. For motivation purposes, assume that the demand points represent customers or patients, and v0 is the location of a
repairman or amedical doctor who provides assistance or health services, respectively. Suppose first that the cost of serving
a coalition S ⊆ N is proportional to the length of the tour traveled by the server fromhis home base v0, visiting eachmember
of the coalition and returning to v0. We then obtain the traveling salesman game, studied in [16,28].

In another situation v0 can represent a central depot that all the existing communities must connect to. In this case the
cost a coalition has to pay can be the length of a Steiner subtree connecting its members to v0. This model is discussed in
[9,10,19,29].

Our study is motivated by location models, where the time elapsed till the service is provided (response time) is critical.
The cost function, also capturing the spreading of S and its distances from v0, that we study in this paper is the diameter
of the set S ∪ {v0}. As an example of this situation, consider the case in which a set of cities want to install a system to
communicate among themselves. The cost of the communication system is proportional to the largest distance between a
pair of cities, including the information center v0.

We now formally define the two classes of cooperative cost games based on the above facility location problems, that
we study in this paper.

For any subgraph G′
= (V ′, E ′) of G = (V , E) we let D∗(G′) denote its diameter, i.e., the longest of the distances in the

space A(G′) between all pairs of nodes in V ′:
D∗(G′) = max

x,y∈V ′
dG′(x, y),

where dG′(x, y) denotes the shortest distance between x and y in A(G′). (If G′ is not connected we define D∗(G′) = ∞.) A
pair of nodes, vi, vj ∈ G′ such that the distance between them in G′ is equal to D∗(G′) is called a diametrical pair of G′.

Suppose that a coalition S ⊆ N decides to use a subgraph G′
= (V ′, E ′), satisfying S ∪ {v0} ⊆ V ′, to establish

communication among its members, including v0. Primary transmission points are established at the nodes in S ∪ {v0}.
In many situations the communication cost may depend only on the distances in A(G′) between pairs of nodes in S ∪ {v0},
i.e., primary transmitters. However, in some situations, the technology used requires that, in addition, auxiliary transmission
points are setup at all the extra nodes, V ′

\ S ∪ {v0}, in the subgraph. In these situations there is a cost associated with the
inclusion of the extra nodes in the subgraph. The overall communication cost associated with the coalition S may then
depend on the distances between all pairs of nodes in V ′, i.e., primary and auxiliary transmission points. The two games we
consider in this paper refer to the two scenarios mentioned above, respectively.

The first game, denoted by (N, vI), is the minimum diameter location game (MDLG), where for each coalition S ⊆ N , the
cost is the maximum distance between pairs of nodes of S ∪ {v0} in the selected subgraph G′. Since the additional nodes
have no effect on the cost, in order to minimize its cost, the coalition will select G′

= G = (V , E). Thus, the characteristic
function value is defined by the diameter of S ∪ {v0} in A(G), i.e.,

vI(S) = max
x,y∈S∪{v0}

d(x, y).

Note that the above setup, defined only on a metric space A(G), also captures the case where N ∪ {v0} are points in a
general metric space X . To model such a general case, consider the complete undirected graph G∗

= (N ′, E ′) with node set
N ′

= N ∪ {v0}, and for each pair of nodes x, y ∈ N ′ set the length of the edge connecting them in G∗ to be equal to the
distance between them in X .

The second minimum diameter situation introduced in this paper and denoted by (N, v∗

I ), is called theminimum Steiner
subgraph diameter game (MSSDG). In this game the cost of a coalition S ⊆ N , is the maximum distance between all pairs of
nodes in the selected subgraph G′

= (V ′, E ′). The coalition will select the subgraph minimizing its cost. (Unlike the case of
the first game, the best subgraph is not necessarily the entire graph G.) Formally, the characteristic function v∗

I is defined as
follows:

For each subset S ⊆ N , define G(S) to be the set of all connected subgraphs of G spanning S∪{v0}. G(S) is called the set of
Steiner subgraphs spanning S ∪ {v0}. Given a coalition S ⊆ N , we define its value, v∗

I , as the minimum diameter of a Steiner
subgraph spanning S ∪ {v0}, i.e.,

v∗

I (S) = min
G′∈G(S)

D∗(G′).
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Fig. 1. The graph of Example 1.1.

A subgraph G∗(S) ∈ G(S) such that v∗

I (S) = D∗(G∗(S)) is called S-optimal. By definition, if G∗(S) = (V ′, E ′) is S-optimal
then we can assume without loss of generality that G∗(S) is induced by its node set V ′, i.e., E ′ consists of all edges in G
connecting pairs of nodes in V ′ only. In particular, if we let E(S∪{v0}) denote the set all edges of G connecting pairs of nodes
in S ∪ {v0}, then, Gv0(S) = (S ∪ {v0}, E(S ∪ {v0})), the subgraph induced by S and v0, is a subgraph of G∗(S).

A game related to (N, v∗

I ) is studied in [25]. In that game, called the minimum radius location game, or the minimum
Steiner subtree diameter game, the value of a coalition S is theminimumdiameter over all Steiner subtrees spanning S∪{v0}.

We emphasize the difference between vI(S) and v∗

I (S). vI(S) is the longest of the distances in the space A(G) between all
pairs of nodes in S ∪ {v0}, while v∗

I (S) is the longest of the distances in the space A(G∗(S)) between all pairs of nodes of an
S-optimal Steiner subgraph G∗(S). In particular,

vI(S) ≤ v∗

I (S).

Also, if the edge lengths of G satisfy the triangle inequality then vI(S) = v∗

I (S), for any S ⊆ N .
In the next example we illustrate the difference between the two characteristic functions.

Example 1.1. Consider the 6 node graph G = (V , E) with V = {v0, v1, v2, v3, v4, v5} and E = {(v0, v2), (v0, v3), (v0, v4),
(v1, v2), (v1, v3), (v1, v4), (v2, v5), (v3, v5)}. Let the length of the edges (v0, v4), (v1, v4), (v2, v5) and (v3, v5) be equal to
0.5, and let the length of the remaining 4 edges be equal to 1 (see Fig. 1).

Let S = {v1, v2, v3}. Recall that in order to calculate vI(S), it is sufficient to consider the entire graph G, and calculate the
shortest distances in A(G) between all pairs of nodes in S ∪{v0}. The maximum of all these distances is 1. Then vI(S) = 1. To
calculate v∗

I (S)weneed to consider 4 subgraphs, i.e., the subgraphs induced by the node sets S∪{v0}, S∪{v0, v4}, S∪{v0, v5},
and V . It is easy to check that the diameter of all these 4 subgraphs is 2. For example, the diameter of the entire graph is
given by d(v4, v5) = 2. Therefore v∗

I (S) = 2.

Finding a minimum diameter spanning Steiner subgraph of a given subset of nodes seems to be an interesting
combinatorial problem which, to the best of our knowledge, has not been discussed in the literature. (Note that unlike
the minimum length spanning Steiner subgraph, the minimum diameter spanning subgraph is not necessarily a subtree.)
We elaborate on the complexity of this problem in Sections 3.1.1 and 3.1.2.

Our goal is to investigate the existence of core elements for the two games. In Section 2 we show that C(N, vI) is always
nonempty. Moreover, there is an extreme point of C(N, vI), which has at most two positive components (associated with
a diametrical pair). We also prove that testing whether a given vector x is in C(N, vI) is NP-hard. In Section 3 we study the
game (N, v∗

I ). We show that its core C(N, v∗

I ) may be empty when the set of players is a proper subset of V \ {v0}. On the
other hand, if the set of players is equal to V \ {v0}, then C(N, vI) ⊆ C(N, v∗

I ). We also show that the problem of computing
v∗

I (S) for a given subset of players is NP-hard to approximate within a multiplicative factor strictly smaller than 4/3, and
v∗

I (S) can be efficiently approximated within a factor 2. Finally, we prove that for any coalition S, vI(S) ≤ v∗

I (S) ≤ 2vI(S),
which in turn implies that any vector in C(N, vI) is a 1/2-budget balanced allocation of the game C(N, v∗

I ). In Section 4,
some results on the calculation of the nucleolus and the Shapley value are shown for the particular case of tree networks.
We also present a compact formulation of the core in this case. The paper ends with some conclusions.

2. The minimum diameter location game, (N, vI )

This section is devoted to the MDLG. We first prove that C(N, vI) is nonempty.

Theorem 2.1. Given a graph G = (V , E), and a subset N ⊆ V \ {v0}, let (N, vI) be the respective minimum diameter location
game, defined over A(G). Then, there is an extreme point of C(N, vI), which has at most two positive components.

Proof. Let vi, vj ∈ N ∪ {v0} such that vI(N) = d(vi, vj).
If vj = v0, define the allocation x′ by setting x′

i = vI(N) = d(vi, v0), and x′

k = 0, for any k ≠ i. It is easy to see that x′ is in
the core since for each coalition S such that vi ∈ S, we have x′(S) = x′

i = d(vi, v0) ≤ vI(S).
Next suppose that vi ≠ v0 and vj ≠ v0.We present two extreme points of C(N, vI). First, define the allocation x′ by setting

x′

i = d(vi, v0), x′

j = vI(N)−d(vi, v0), and x′

k = 0 for any k ≠ i, j. Note that by the triangle inequality, x′

j ≤ d(vj, v0) = vI({vj}).
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Then, x′(S) = vI(N) = d(vi, vj) ≤ vI(S), for each coalition S, satisfying vi, vj ∈ S. Also, x′(N) = vI(N). If vi ∈ S and vj ∉ S,
then x′(S) = x′

i = d(vi, v0) ≤ vI(S). Similarly, if vj ∈ S and vi ∉ S, then x′(S) = x′

j ≤ d(vj, v0) ≤ vI(S).
A second extreme point of C(N, vI), x′′, is similarly defined by setting, x′′

j = d(vj, v0), x′′

i = vI(N) − d(vj, v0), and x′′

k = 0
for any k ≠ i, j. This concludes the proof. �

In spite of the facts that C(N, vI) is nonempty and that vI(S) can efficiently be computed for any coalition S, we next show
that testing membership in the core for a given vector x is NP-hard for general graphs. Note that the latter task amounts to
testing whether minS⊆N(vI(S) − x(S)) ≥ 0.

Formally, given an MDLG with an underlying graph G = (V , E) with positive edge weights, and an allocation vector x,
the core membership decision problem is to determine whether x is not in the core C(N, vI).

Theorem 2.2. The core membership decision problem is NP-hard even when G = (V , E) is a complete graph, N = V \ {v0}, the
edge lengths satisfy the triangle inequality, and x distributes the total cost vI(N) equally.

Proof. We formulate the independent set problem [6] as an instance of the coremembership decision problem. An instance
of the NP-Complete independent set problem is an undirected graph G1 = (V1, E1) and an integer k, and the decision
problem is whether G1 has an independent set (i.e., a set of nodes such that no pair of them are adjacent) of size greater than
k. Without loss of generality we may assume that |V1| is even and k = |V1|/2. (If k ≤ |V1|/2, add |V1| − 2k isolated nodes to
G1. If k > |V1|/2, add a clique with 2k − |V1| nodes to G1.)

Let G1 = (V1, E1) be an undirected graph with V1 = {v1, . . . , vn}. Let G2 = (V1, E2) be the complete graph with node set
V1. Associate a positive length with each edge of E2 as follows: If e ∈ E1 then set the length of e to be equal to n. If e ∉ E1
then set the length of e to be equal to n/2. Let G3 = (V1 ∪{v0}, E3) be the graph obtained from G2 by adding the node v0 and
the n edges connecting v0 to the n nodes in V1. The length of each one of these n edges is set to be equal to n/2. Note that G3
is a complete graph with n + 1 nodes, and its edges satisfy the triangle inequality.

Next, set N = V1 and consider the game (N, vI), defined on A(G3). In order to prove our claim, we will show that
x = (1, . . . , 1) is not in C(N, vI) if and only if the graph G1 has an independent set of cardinality greater than n/2. We
assume without loss of generality that E1 is nonempty, and therefore vI(N) = n.

First note that vI(S) ∈ {n, n/2} for any S ⊆ N . Also, vI(N) = n =
n

j=1 xj.
Suppose that G1 has an independent set S with |S| > n/2. Then, by definition vI(S) = n/2 < |S| =


vj∈S xj = x(S), and

therefore x ∉ C(N, vI).
Next suppose that there is a subset S ⊆ N such that vI(S) < x(S) =


vj∈S xj = |S| ≤ n. Therefore, vI(S) = n/2, and

|S| > n/2. In particular, the subgraph induced by S has its diameter equal to n/2. By the definition of the edge lengths, S
is an independent set of G1 (otherwise there would exist a pair vi, vj ∈ S with d(vi, vj) = n). Since |S| > n/2, the result is
proven. �

In view of the above result it is unlikely that there is a formulation of C(N, vI) involving only a polynomial number of
linear constraints. In Section 4 we present an efficient representation of C(N, vI) for tree graphs.

3. The minimum Steiner subgraph diameter location game, (N, v∗
I )

Unlike the game (N, vI), we will show that the core of the game (N, v∗

I ) can be empty when N is a proper subset of
V \ {v0}, and it is nonempty when N = V \ {v0}. In the latter case we call the game complete. Note that when the game is
complete, vI(N) = v∗

I (N). This is summarized in the following result.

Proposition 3.1. Let N ⊆ V \ {v0}. Then for any S ⊆ N, vI(S) ≤ v∗

I (S). Moreover, if N = V \ {v0}, then vI(N) = v∗

I (N).

Theorem 3.1. Given a graph G = (V , E), suppose that N = V \ {v0}. Let (N, vI∗) be the respective minimum Steiner
subgraph diameter location game, defined over A(G). Then, there is an extreme point of C(N, v∗

I ), which has at most two positive
components.

Proof. The result follows from the above proposition and Theorem 2.1, since C(N, vI) ⊆ C(N, v∗

I ) in this case. �

The next result follows directly from Theorem 2.2 since the games (N, vI) and (N, v∗

I ) are identical when the underlying
graph is complete and its edges satisfy the triangle inequality.

Theorem 3.2. Let G = (V , E) be a complete graph and let N = V \ {v0}. Suppose that its edge lengths satisfy the triangle
inequality. Let x = (1, 1, . . . , 1). Then the problem of determining whether x is not in C(N, v∗

I ) is NP-hard.

The next example shows that the core of the game (N, v∗

I ) might be empty.

Example 3.1. Consider the graph G = (V , E), where

V = {v0, v1, v2, v3, v4, v
′

1, v
′

2, v
′

3, v
′

4}
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Fig. 2. The graph of Example 3.1.

Fig. 3. The graph of Example 3.2.

Fig. 4. Examples 3.3 and 3.4 in thin and thick lines, respectively.

and

E = {(v0, v
′

1), (v0, v
′

2), (v0, v
′

3), (v0, v
′

4), (v1, v
′

2), (v1, v
′

3), (v1, v
′

4), (v2, v
′

1), (v2, v
′

3), (v2, v
′

4), (v3, v
′

1), (v3, v
′

2),

(v3, v
′

4), (v4, v
′

1), (v4, v
′

2), (v4, v
′

3)}.

All edges are of unit length, see Fig. 2.
Consider the case where the set of players is N = {v1, v2, v3, v4}. It is easy to see that for each S with |S| = 3, v∗

I (S) = 2,
and v∗

I (N) = 3. (The superset yielding v∗

I (N) must include some node v′

i and the distance between vi and v′

i on the entire
graph is 3.) If xwas in the core it would have to satisfy, x1+x2+x3 ≤ 2, x1+x3+x4 ≤ 2, x1+x2+x4 ≤ 2, and x2+x3+x4 ≤ 2.
Summing these inequalities yields 3(x1 + x2 + x3 + x4) ≤ 8, which is not possible when x1 + x2 + x3 + x4 = 3.

Also note that vI(N) = 2 < v∗

I (N).

In the above example the set of playersN is a proper subset of V \{v0}, and therefore it does not contradict Proposition 3.1
nor Theorem 3.1.

The results on the emptiness and nonemptiness of C(N, v∗

I ) have also been observed in some other combinatorial
optimization games. For example, in theminimum spanning tree game, v(S) is the total length of a Steiner subtree spanning
S ∪ {v0}. The core of this game is nonempty if the set of players satisfies N = V \ {v0}, [9], although it can be empty if N is a
proper subset of V \ {v0}, [29].

Remark 3.1. Theorem 3.1 implies that some variants of the complete version of (N, v∗

I ) also have nonempty cores when
N = V \ {v0}. Consider for example the game (N, v′

I), defined by the characteristic function

v′

I(S) = D∗(Gv0(S)).

Unlike the games (N, vI) and (N, v∗

I ), this game is not even monotone, and therefore can have core allocations which
are not nonnegative. Nevertheless, since v∗

I (S) ≤ v′

I(S), for all coalitions S ⊆ N , and v∗

I (N) = v′

I(N), we conclude that
C(N, v∗

I ) ⊆ C(N, v′

I). In fact, it is easy to see that C(N, v∗

I ) = C(N, v′

I) ∩ RN
+
.



J. Puerto et al. / Discrete Applied Mathematics 160 (2012) 970–979 975

3.1. Computing v∗

I (S)

In this section we show several examples and observations on properties and approximability of v∗

I (S).

Remark 3.2. As noted in the Introduction, for any S there is a minimum diameter Steiner subgraph of S which contains
Gv0(S). Clearly, the entire graphmay not be S-optimal for some S. (Consider, for example, a 2-star tree with V = {v0, v1, v2}

and positive edge lengths centered at v0,N = {v1, v2} and S = {v1}.)
Moreover, even if the diameter of Gv0(S) is unique and strictly greater than the distance in G between the unique

diametrical pair of Gv0(S), the minimum diameter Steiner subgraph of S can still be Gv0(S). In other words, adding to Gv0(S)
a shortest path in G between the diametrical pair may increase the diameter, as shown in the following example.

Example 3.2. Consider the following 12-node graph G with unit edge lengths. There is a 10-node cycle where the nodes
vi, i = 0, 1, . . . , 9, are cyclically ordered. In addition there are the edges (v3, v10) and (v10, v11), see Fig. 3.

Let S = {v1, . . . , v6, v10, v11}. The diameter of Gv0(S) is equal to 6, and it is uniquely attained by the pair v0, v6. The
shortest distance in G between v0 and v6 is 4. However, adding the shortest path in G between v0 and v6 to Gv0(S) yields the
graph G itself with D∗(G) = 7.

The above example can be extended to show that adding to the graph a shortest path between a diametrical pair ofGv0(S)
can asymptotically increase the diameter by a factor of 1/2.

Example 3.3. Consider the 5 node graph G = (V , E), where V = {v0, v1, . . . , v4} and E = {(v0, v1), (v0, v2), (v0, v3),
(v1, v4), (v2, v4)}, depicted in Fig. 4 (thin line). For a ∈ Z, the lengths of its edges are: a for edges (v0, v1) and (v0, v2), and
a − 1 for the other 3 edges, (v0, v3), (v1, v4) and (v2, v4).

Let S = {v1, v2, v3}. Then, Gv0(S) is the 3-star centered at node v0. Adding the shortest path between the diametrical pair
{v1, v2} will increase the diameter from 2a to 3a − 2.

Remark 3.3. Note, however, that an increase by a factor of 1/2, observed in the above example, is the worst case over all
graphs.

Consider a general undirected connected graph G = (V , E). Let S ⊆ N . Suppose without loss of generality that v1, v2 is a
diametrical pair in Gv0(S). Let P(v1, v2) be a shortest path in A(G) between them. Let G′(S) denote the graph obtained from
Gv0(S) by adding P(v1, v2). Then, for each pair of nodes, vi ∈ Gv0(S) and vj ∈ P(v1, v2),

dG′(S)(vi, vj) ≤ min(dGv0 (S)(vi, v1) + d(v1, vj); dGv0 (S)(vi, v2) + d(v2, vj))

≤ dGv0 (S)(v1, v2) + min(d(v1, vj); d(v2, vj))

≤ dGv0 (S)(v1, v2) + (1/2)d(v1, v2)

≤ (3/2)dGv0 (S)(v1, v2).

(For each subgraph G∗, and a pair of nodes vs, vt , we let dG∗(vs, vt) denote the distance between vs and vt in A(G∗).)

Also, note that even when the addition of a shortest path does not improve the diameter, it is still possible to improve it
by adding some other path, as shown in the next example.

Example 3.4. Consider the graph in Example 3.3. Instead of adding the edges (v1, v4), (v4, v2), add the edges
(v1, v5), (v5, v6), (v6, v2) of lengths 1/2, 2a − 2, and 1/2, respectively, see Fig. 4.

The length of the path that we have added is 2a−1, which is larger than the length of the path (v1, v4, v2). Nevertheless,
its addition to the 3-star will decrease the diameter from 2a to 2a − 1/2.

3.1.1. A 2-approximation for v∗

I (S)
A modification of the above construction can be used to obtain a 2-approximation for v∗

I (S), and prove that v∗

I (S) ≤

2vI(S).
Consider the game (N, v∗

I ), defined on a general connected undirected graphG. Let S ⊆ N . To approximate v∗

I (S) consider
the subgraph Gv0(S). For each pair of nodes vi, vj of Gv0(S) add to Gv0(S) a shortest path, say P(vi, vj), connecting the pair in
A(G). Let L∗ denote the maximum length of these paths. By definition L∗

= vI(S). Let G′(S) denote the graph obtained after
the addition. It is easy to see that for each pair vt , vs in G′(S), dG′(S)(vt , vs), the distance between them in A(G′(S)), satisfies
dG′(S)(vt , vs) ≤ 2L∗

= 2vI(S). Thus,

vI(S) ≤ v∗

I (S) ≤ D∗(G′(S)) ≤ 2vI(S).

We conclude that D∗(G′(S)) is a 2-approximation of v∗

I (S), and

Theorem 3.3. Given an undirected graph G = (V , E), suppose that N ⊆ V \ {v0}. Then for any S ⊆ N, vI(S) ≤ v∗

I (S) ≤ 2vI(S).

The following example shows that the factor 2 is asymptotically best possible for the approximation D∗(G′(S)).
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Fig. 5. The graph of Example 3.5.

Example 3.5. Consider a 4-star centered at v0. The nodes v1, v2 are connected to v0 with edges of length a, and the nodes
v3, v4 are connected to v0 with edges of length a − δ. Define S = {v1, v2, v3, v4}. Next, add node v5 to the star and connect
it to nodes v1 and v2 with edges of length a− δ. Also, add node v6 to the star and connect it to nodes v3 and v4 with edges of
length a − 2δ, see Fig. 5. We then have v∗

I (S) = 2a and D∗(G′(S)) = d(v5, v6) = 4a − 4δ. Hence, D∗(G′(S)) = 2v∗

I (S) − 4δ.

Example 1.1 shows that 2vI(S) is a tight upper bound on v∗

I (S).
Using game theory terminology, [3], the last theorem implies that every vector x ∈ C(N, vI), is a 1/2-budget balanced

vector of the game C(N, v∗

I ), i.e., for any S ⊆ N, x(S) ≤ v∗

I (S), and (1/2)v∗

I (N) ≤ x(N) ≤ v∗

I (N).

3.1.2. Inapproximability of v∗

I (S)
Generally, the problem of computing v∗

I (S) for a given coalition is NP-hard, [18]. It is not known whether the
approximation factor 2 is best possible, although to get a better approximation a different solution approach would be
required. However, we have slightly modified the NP-hardness proof of Levin [18] to show that even approximating within
a constant factorα, α < 4/3, is already NP-hard. Since Levin’s proof is unpublished, for the sake of completeness, we include
a proof of our modified inapproximability result.

Lemma 3.1. For any α < 4/3, approximating v∗

I (S) within a constant factor α, is NP-hard.

Proof. The reduction is from SAT.
Consider a SAT instance whose literals arew1, . . . , wn, and its clauses are C1, . . . , Cm. Let us denote the negation ofwi by

ui. Construct a graph whose node set is w1, . . . , wn, u1, . . . , un, C1, . . . , Cm, t (i.e., one node for each literal or its negation,
one node for each clause and one additional node for the true assignment). The set S is defined by S = {C1, . . . , Cm} and
v0 = t . It remains to define the edge lengths.

Let 0 < ε ≤ 1/3. Each clause is connected to its literals via edges of length 1 − ε. The length of each edge connecting
two literals is 1 + ε, if they correspond to different variables, and for every i = 1, . . . , n, the length of the edge (wi, ui) is
2 + 2ε. The length of an edge between any two clauses is 2. The length of an edge between t and a clause node is 3. Finally,
the length of an edge between t and wi or ui (for every i = 1, . . . , n) is 1 + ε.

In this graph there is a superset S ′, S ⊆ S ′, such that the subgraph induced by S ′
∪{v0} has diameter at most 2 if and only

if the SAT formula can be satisfied.
First note that if there is a satisfying assignment then picking the true literals with S gives the correct S ′ with diameter

at most 2.
It remains to consider the other direction. Assume that there is a superset S ′ such that the induced diameter is at most

2. Note that by the constraint 0 < ε ≤ 1/3, for every i = 1, . . . , n, S ′ may contain either wi or ui but not both, because the
distance between these two nodes is greater than 2. (By the choice of ε this distance is equal to 2 + 2ε.) Assign a true value
to the node that belongs to S ′ among the two nodes.

Then, note that for every Cj there is a literal whose node is in S ′ and therefore every clause has a true literal, so this
assignment satisfies the SAT formula.

To observe that approximating within a constant factor α < 4/3 is NP-hard we note that in the above construction, if
v∗

I (S) > 2 then v∗

I (S) = 2 + 2ε. Thus, choosing ε = 1/3 yields the result. �

4. Tree networks

In this section we focus on the interesting case of tree graphs. Let T = (V , E) be a tree graph with V = {v0, v1, . . . , vn}

and E = {e1, . . . , en}. Let N ⊆ V \ {v0} be the set of players. It is easy to see that in this case the two games, (N, vI) and
(N, v∗

I ), coincide, i.e., vI(S) = v∗

I (S), for any S ⊆ N . We present an O(n3) algorithm for calculating the Shapley value. In
addition, we provide a compact representation of the core of the game, which has O(n2) linear constraints.

First, it is shown in [31] that the diameter function is submodular, i.e., for each pair of subsets S1 ⊆ N, S2 ⊆ N ,

vI(S1 ∪ S2) + vI(S1 ∩ S2) ≤ vI(S1) + vI(S2).
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As a result we conclude that the minimum diameter game on a tree network is concave. (See [26] for a characterization of
the core of concave games.)

Also, since the game is concave, its nucleolus [15] can be computed in polynomial time, (see [5,17]), and membership in
the core can be verified in polynomial time.

Moreover, since the diameter game (N, vI) is concave, it follows that its Shapley value is always an allocation in the core
of the game. Recall that the Shapley value is the allocation φ = (φ1, . . . , φn) given by

φk =


S⊆N\{vk}

s!(n − s − 1)!
n!

(vI(S ∪ {vk}) − vI(S)) ∀ vk ∈ N, (1)

where s = |S|. (For convenience we assume that |N| = n.)
Generally, assuming that the characteristic function is already known, it might take an exponential number of basic

operations with respect to the number of players, to explicitly calculate φ by the above expression. In the rest of the section
we show that, for diameter games defined on tree graphs, φ can be calculated in polynomial time.

First note that for each possible value of vI(S∪{vk})−vI(S) there can be several combinations of coalitions S and players
vk giving this value.

Consider some vk ∈ N , and a coalition S ⊆ N \ {vk}. In order to analyze the values that vI(S ∪ {vk}) − vI(S) can take on,
we use the classical result of [11]. Given a subtree T ′, to find a diametrical pair of nodes of T ′

= (V ′, E ′), arbitrarily choose
some node of T ′, say vp. Let vq satisfy d(vq, vp) = maxvi∈V ′ d(vi, vp), and let vr satisfy d(vr , vq) = maxvi∈V ′ d(vi, vq). The pair
{vq, vr} is a diametrical pair of T ′. This pair can therefore be found in O(|V ′

|) time. This result implies the following property.

Lemma 4.1. Let {vq, vr} be a diametrical pair of the tree T ′
= (V ′, E ′), and let T ′′

= (V ′′, E ′′) be a subtree of T ′ such that
vq ∈ V ′′. Then, there is a node vs ∈ V ′′, such that {vq, vs} is a diametrical pair of T ′′.

We now apply the lemma to the case where T ′ is theminimal subtree spanning S∪{v0, vk} and T ′′ is theminimal subtree
spanning S ∪ {v0}.

The following cases may arise:
• S = ∅. Then, vI(S ∪ {vk}) = d(vk, v0), vI(S) = 0.
• vI(S ∪ {vk}) = d(v0, vk). Then, there exists vj ∈ S such that vI(S) = d(vj, v0).
• vI(S ∪ {vk}) = d(vk, vj), for some vj ∈ S. In this case two subcases are possible:

1. vI(S) = d(vj, v0),
2. vI(S) = d(vj, vt), for some vt ∈ S.

• vI(S ∪ {vk}) = d(vj, vi), for some pair vj, vi ∈ S ∪ {v0}. Then, vI(S) = d(vj, vi) and therefore vI(S ∪ {vk}) − vI(S) = 0.
(We do not have to take this case into consideration in order to calculate the Shapley value.)

Note that the implications statedwith respect to the above cases follow fromLemma4.1, since if vI(S∪{vk}) = d(vk, vj), vj ∈

S ∪ {v0}, then vI(S) is given by the distance from vj to another point of S ∪ {v0}.
Using the above properties, the following algorithm to calculate the Shapley value is proposed.

4.1. Algorithm: computing the Shapley value

For each coalition S, the value vI(S) is a continuous function of the edge lengths of the tree. Therefore, the Shapley value
is continuous in the edge lengths. Hence, by perturbing the edge lengths, if necessary, we may assume without loss of
generality that the distances between the nodes of the tree are distinct. (Specifically, if the edge set of the tree T is given by
E = {e1, . . . , en}, then for each edge ej, we add the term εj to its length l(ej).)

The algorithm we propose calculates the possible marginal values (vI(S ∪ {vk}) − vI(S)) by finding the values of the
diameters of subsets of nodes. These diameters are determined by all possible pairs of nodes in V .

In the first phase of the algorithm vI({vi, vj}) is calculated for each pair of nodes vi, vj ∈ N . (vi and vj are not necessarily
distinct.) The effort of this step is O(n2).

In the second phase we consider all pairs of nodes in N .
• Consider first a pair of distinct nodes vi, vj ∈ N , such that vI({vi, vj}) = d(vi, vj). By the above nondegeneracy assumption

we have d(vi, vj) > d(vi, v0) and d(vi, vj) > d(vj, v0).
Let T (i, j) be the maximal subtree with the diameter value equal to d(vi, vj). It clearly takes O(n) time to calculate
T (i, j). (Note that if x is the midpoint of the unique path connecting vi with vj, then the node set of T (i, j) is given by
{vt : d(vt , x) ≤ d(vi, vj)/2}.)
Let N(i, j) be the number of nodes in T (i, j) \ {vi, vj}.
If vk is a node in T (i, j), then for each coalition S ⊆ T (i, j), containing both vi and vj, we have vI(S ∪ {vk}) − vI(S) =

d(vi, vj) − d(vi, vj) = 0. Thus, it is sufficient to consider only the case where vk ∉ T (i, j). Note that in this case, by the
maximality property of T (i, j), we have vI(S ∪ {vk}) = max(d(vk, vi), d(vk, vj)). Hence, in this case for each coalition
S ⊆ T (i, j), vk ∉ S, containing both vi and vj, we have vI(S ∪ {vk}) − vI(S) = max(d(vk, vi), d(vk, vj)) − d(vi, vj).
For each vk ∈ N , define

Ak = {{vi, vj} : vI({vi, vj}) = d(vi, vj),max(d(vk, vi), d(vk, vj)) > d(vi, vj)}.
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• Next we consider the case where vI({vi, vj}) > d(vi, vj). Assume without loss of generality that vI({vi, vj}) = d(vi, v0).
Let T (i, 0) be the maximal subtree with the diameter value equal to d(vi, v0). Let N(i, 0) be the number of nodes in
T (i, 0) \ {vi}. As above, it is sufficient to consider only the case where vk ∉ T (i, 0). Note that in this case we have
vI(S ∪ {vk}) = max(d(vk, vi), d(vk, v0)). Thus, in this case for each coalition S ⊆ T (i, 0), containing vi, we have
vI(S ∪ {vk}) − vI(S) = max(d(vk, vi), d(vk, v0)) − d(vi, v0).

For each vk ∈ N , define

Bk = {vi : max(d(vk, v0), d(vk, vi)) > d(vi, v0)}.

Consider now a subtree T (i, j), with i, j > 0. Then in this case, the number of times that the triplet {vi, vk, vj} and the
pair {vi, vj} assume the marginal value max(d(vk, vi), d(vk, vj)) − d(vi, vj), for coalitions of size r + 2, r = 0, . . . ,N(i, j)

(r different nodes plus the two nodes vi, vj) is


N(i,j)
r


. Similarly, for a subtree T (i, 0) the number of times that the

pair {vi, vk} and the singleton {vi} assume the marginal value max(d(vk, v0), d(vk, vi)) − d(vi, v0), for coalitions of size
r + 1, r = 0, . . . ,N(i, 0) (r different nodes plus vi) is


N(i,0)

r


.

Therefore, for each pair vi ∈ N and vj ∈ N ∪ {v0}, the coefficients that weight each marginal value in our approach are
given by the formula:

C(i, j) =


N(i,j)
r=0


N(i, j)

r


(r + 2)!(n − (r + 2) − 1)!

n!
if j ≠ 0

N(i,0)
r=0


N(i, 0)

r


(r + 1)!(n − (r + 1) − 1)!

n!
if j = 0.

(2)

Summarizing, the Shapley value of a given player vk ∈ N is:

φk =


{vi,vj}∈Ak

C(i, j)(max(d(vk, vi), d(vk, vj)) − d(vi, vj))

+


vi∈Bk

C(i, 0)(max(d(vk, v0), d(vk, vi)) − d(vi, v0)).

For each pair {vi, vj}, C(i, j) can be calculated in O(n) time. Hence, for each k = 1, . . . , n, φk can be computed in O(n2) time.
Therefore, the complexity of the algorithm to compute the Shapley value is O(n3).

4.2. Core representation

We have proved above that testing membership in the cores C(N, vI) and C(N, v∗

I ) is NP-hard. Hence, it is very unlikely
that these cores have compact representations for general graphs. We will next give a compact representation of the core
of these games involving O(n2) constraints, for tree graphs.

First we note that in this case, if N = {v1, . . . , vn}, vI(N) is equal to the diameter of the tree T , [11,12] and can be found
by solving the continuous (or absolute) 1-center problem on T , in O(n) time.

More generally, when N ⊆ V \ {v0}, then for each coalition S ⊆ N, vI(S) is defined as the diameter length of a minimal
spanning tree of S ∪ {v0}. Such a tree, say T ∗(S), solves the continuous 1-center problem for the subset of nodes S ∪ {v0}.
Recall that the continuous 1-center problem for some subset V ′

⊆ V , defines the smallest radius neighborhood in themetric
space A(T ), which covers V ′.

Moreover, T ∗(S) has the following property. There is an edge of T , say (vi, vj), such that the 1-center of T ∗(S) is on this
edge, and

vI(S) = d(vp, vi) + l(vi, vj) + d(vj, vq),

for some nodes vp, vq ∈ S ∪ {v0}.
Clearly, the total number of centers of relevant minimum diameter spanning subtrees is O(n2). In this case each pair of

nodes, vp, vq ∈ N ∪ {v0} contributes one candidate, denoted by cp,q, the midpoint of the unique simple path connecting vp
with vq. If d(v0, cp,q) ≤ d(vp, vq)/2, the respective maximal coalition is then defined by

Sp,q = {u ∈ N : d(u, cp,q) ≤ d(vp, vq)/2}.

If d(v0, cp,q) > d(vp, vq)/2, set Sp,q = ∅.
It is then clear that the core of this game is defined by the O(|N|

2) constraints given in the next lemma.

Lemma 4.2. For a tree graph T = (V , E),

C(N, vI) = {x ∈ RN
+

: x(N) = vI(N), x(Sp,q) ≤ vI(Sp,q), ∀ p, q ∈ N ∪ {v0}}.
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The abovepolynomial representation of the core implies thatmembership in the core canbe tested in strongly polynomial
time by the algorithm in [32].

Remark 4.1. When the tree network is a path, the minimum diameter game coincides with the minimum spanning tree
game discussed in [19]. Hence, the efficient algorithms in [19] can be used to efficiently compute, both the nucleolus and
the Shapley value.

Conclusions

To summarize, we have shown that C(N, vI) is always nonempty. Also, C(N, vI) ⊆ C(N, v∗

I ) when V = N ∪ {v0}. On
the other hand, C(N, v∗

I ) can be empty if N is a proper subset of V \ {v0}. Generally, we have proved that for any coalition
S, vI(S) ≤ v∗

I (S) ≤ 2vI(S), which in turn implies that any core allocation of C(N, vI) is also a (1/2)-budget balanced
allocation of the game (N, v∗

I ).
We have also proved that recognizing whether a given vector x is in the core of the games (N, vI) and (N, v∗

I ) is NP-
hard. For tree graphs the games (N, vI) and (N, v∗

I ) coincide and they are submodular. Also for the tree graph case, we have
presented a compact formulation of the core, and given a polynomial algorithm to compute the Shapley value.
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